
Connecting the Kuramoto Model and the Chimera State

Tejas Kotwal,1,* Xin Jiang,2 and Daniel M. Abrams3
1Department of Mathematics, Indian Institute of Technology Bombay, Mumbai 400076, India

2LMIB and School of Mathematics and Systems Science, Beihang University, Beijing 100191, China
3Department of Engineering Sciences and Applied Mathematics; Department of Physics and Astronomy,

Northwestern University, Evanston, Illinois 60208, USA
(Received 3 October 2017; published 29 December 2017)

Since its discovery in 2002, the chimera state has frequently been described as a counterintuitive,
puzzling phenomenon. The Kuramoto model, in contrast, has become a celebrated paradigm useful for
understanding a range of phenomena related to phase transitions, synchronization, and network effects.
Here we show that the chimera state can be understood as emerging naturally through a symmetry-breaking
bifurcation from the Kuramoto model’s partially synchronized state. Our analysis sheds light on recent
observations of chimera states in laser arrays, chemical oscillators, and mechanical pendula.
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The chimera state [1] was so dubbed [2] because of its
similarity to the Greek mythological creature made up of
parts (a lion’s head, a goat’s body, and a serpent’s tail) that
did not belong together. It seemed unbelievable that
identical oscillators, coupled in identical ways to their
neighbors, could behave in radically different fashions.
Appeals to insight from other symmetry-breaking phenom-
ena were fruitless, because in most comparable problems
the symmetric state loses stability; here, both the symmetric
(fully synchronized) and the asymmetric (chimera) state
were simultaneously stable.
Despite continued research on chimera states (see, e.g.,

[3–20]) and significant mathematical insight, they have
resisted intuitive explanation. In this Letter, we show how
intuition can indeed yield an understanding of the chimera
state. For a natural extension of the model, it occurs as the
limiting case of a pitchfork bifurcation that destabilizes the
symmetric state.
Mathematical background.—The “traditional” Kuramoto

model [21–23] has been extensively studied (see, e.g.,
[24,25]); it is

_θi ¼ ωi −
K
N

XN
j¼1

sinðθi − θjÞ; ð1Þ

where θi and ωi are the phase and the natural frequency,
respectively, of the ith oscillator in a population ofN coupled
oscillators. Typically, the natural frequencies fωig are drawn
from a known distribution gðωÞ.
In the thermodynamic limit N → ∞, the continuum of

oscillators at each ω value can be described by the
probability density function fðθ; t;ωÞ, which must satisfy
the continuity equation. The sum in (1) represents an
average of the sine of the phase difference over all
oscillators and is therefore generalized as an integral.
Thus, the instantaneous velocity of an oscillator with
natural frequency ω becomes

vðθ; t;ωÞ ¼ ω−

K
Z

π

−π

Z
∞

−∞
sinðθ − θ0Þfðθ0; t;ω0Þgðω0Þdω0dθ0: ð2Þ

A simple system that can form chimera states consists
of two clusters of oscillators [5,26,27], with equations
given by

_θσi ¼ ωσ
i −

X2
σ0¼1

Kσσ0

Nσ0

XNσ0

j¼1

sinðθσi − θσ
0

j þ αÞ: ð3Þ

Here the two clusters are identified by σ ∈ f1; 2g, ωσ
i are

drawn from a distribution gðωÞ, Nσ is the number of
oscillators in cluster σ, and α is the phase lag. The coupling
strength between oscillators in cluster σ0 and those in
cluster σ is given by Kσσ0 ; we takeK11 ¼ K22 ¼ μ > 0, and
K12 ¼ K21 ¼ ν > 0, with μ > ν (so intracluster coupling is
stronger than intercluster coupling). By rescaling time, we
may set μþ ν ¼ 1. It is useful to define the parameters
A ¼ μ − ν and β ¼ π=2 − α, because, as will be shown
later, chimera states exist in the limit where these quantities
are small.
We begin by analyzing system (3) in the continuum limit

where Nσ → ∞ for σ ∈ f1; 2g. Two probability densities
fσðθ; t;ωÞ are assumed to exist and satisfy continuity
equations for each population. Thus, Eqs. (3) become

vσðθ; t;ωÞ ¼ ω −
X2
σ0¼1

Kσσ0

Z
∞

−∞

Z
π

−π
sinðθ − θ0 þ αÞ

× fσ
0 ðθ0; t;ω0Þdθ0dω0; ð4Þ

where vσ represents the phase velocity _θ of oscillators in
cluster σ. Note that we have dropped the superscripts on θ
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and ω to ease the notation—θ means θσ and θ0 means θσ
0
,

and similarly for ω.
We define a complex order parameter for each cluster:

zσðtÞ ¼ heiθσ i ¼
Z

∞

−∞

Z
π

−π
eiθfσðθ; t;ωÞdθdω; ð5Þ

so that vσðθ; t;ωÞ simplifies to

vσðθ; t;ωÞ ¼ ωþ 1

2i

X2
σ0¼1

Kσσ0 ðzσ0e−iðθþαÞ − z̄σ0eiðθþαÞÞ: ð6Þ

Ott and Antonsen proposed the following ansatz for the
expansion of fσðθ;ω; tÞ in a Fourier series [28]:

fσðθ; t;ωÞ ¼ gðωÞ
2π

�
1þ

�X∞
n¼1

½aσðω; tÞeiθ�n þ c:c:

��
; ð7Þ

where c.c. stands for the complex conjugate. Plugging (7)
into the continuity equation yields a system of two coupled
partial integro-differential equations:

∂aσ
∂t þ iωaσ þ

1

2

X2
σ0¼1

Kσσ0 ðzσ0a2σe−iα − z̄σ0eiαÞ ¼ 0; ð8Þ

where zσðtÞ ¼
R∞
−∞ gðωÞāσðω; tÞdω.

We henceforth take gðωÞ to be a Lorentzian (Cauchy)
distribution with mean zero and scale parameter (width) D,
so πgðωÞ ¼ D=ðω2 þD2Þ. This allows zσðtÞ to be evalu-
ated analytically by contour integration, yielding zσðtÞ ¼
āσð−iD; tÞ; plugging this into Eq. (8) results in a two-
dimensional system of complex ordinary differential equa-
tions (ODEs) that describe the dynamics of the order
parameters of the two clusters.
We rewrite the ODEs in polar coordinates by substituting

z1 ¼ r1e−iϕ1 and z2 ¼ r2e−iϕ2 and defining ϕ ¼ ϕ1 − ϕ2.
This yields the three-dimensional system of real ODEs

_ϕ ¼
�
1þ r21
2r1

�
½μr1 sin α − νr2 sinðϕ − αÞ�

−
�
1þ r22
2r2

�
½μr2 sin αþ νr1 sinðϕþ αÞ�; ð9aÞ

_r1 ¼ −Dr1 þ
�
1 − r21
2

�
½μr1 cos αþ νr2 cosðϕ − αÞ�; ð9bÞ

_r2 ¼ −Dr2 þ
�
1 − r22
2

�
½μr2 cos αþ νr1 cosðϕþ αÞ�: ð9cÞ

For our analysis, we set μ ¼ ð1þ AÞ=2, ν ¼ ð1 − AÞ=2,
and α ¼ π=2 − β. The bifurcation analysis will be carried
out in the three-dimensional parameter space ðβ; A;DÞ.

Searching for the connection.—In previous works
[2,3,5], the D ¼ 0 case was analyzed, and it was shown
that the chimera state disappears via a saddle-node bifur-
cation with an unstable saddle chimera state. There was no
apparent connection between the stable chimera state and
the fully synchronous state—both states seemed to be
stable with different basins of attraction [29]. In this
section, we attempt to find such a connection by searching
the 3D parameter space ðβ; A;DÞ.
In Fig. 1, we show bifurcation curves in A vs β for

various slices of D ≥ 0. For D > 0, we observe a pitchfork
bifurcation curve close to the origin that does not exist in
theD ¼ 0 case. We also observe that the saddle-node curve
does not extend to the origin for D > 0. Another cross-
sectional view with fixed A is shown in Fig. 2, where the
pitchfork surface appears “balloonlike.” Laing obtained a
similar figure in Ref. [26], where a chimera state on a 1D
ring with dispersion in natural frequency was analyzed. In
Fig. 3, we assemble a set of two-parameter sections to
construct a 3D bifurcation plot [32].
Understanding the chimera “wedge”.—How does the

geometry of the bifurcation surfaces affect the order
parameters r1, r2 of the two clusters? We address this
question by looking at the effect of frequency dispersion on
β-parameter sweeps of r1, r2.
For theD ¼ 0 case, only a saddle-node bifurcation exists

[5]. As D is increased from 0, we expect the order
parameter of the spatially symmetric synchronized
state (or its extension, which we also refer to as a
“synchronized” state [33]) to decrease due to the hetero-
geneity among oscillator natural frequencies. This is
apparent from the traditional Kuramoto model, as increas-
ing the dispersion in natural frequencies results in a smaller

FIG. 1. Bifurcations of equilibria from Eqs. (9) with
D ¼ 0.0006, μ ¼ ð1þ AÞ=2, and ν ¼ ð1 − AÞ=2. Red solid
curves, pitchfork bifurcation; blue dashed curves, saddle-node
bifurcation. The inset shows how curves shift as parameters
change, with D ¼ 0, D ¼ 0.000 15, D ¼ 0.0003, and D ¼
0.0006 from the bottommost curve to the topmost (note that
pitchfork bifurcation does not occur with D ¼ 0; in that case, the
saddle-node curve extends to the origin). Via numerical continu-
ation [30,31].
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fraction of oscillators becoming phase locked. The same
phenomenon happens here, as shown in Fig. 4: Moving
from the top panel to the bottom, the synchronized branch
lowers as D is increased. It also ceases to be a horizontal
line when D > 0, and new intersections with the saddle-
node branches of solution give rise to two pitchfork
bifurcations, one supercritical and the other subcritical.
As D increases further, the subcritical pitchfork and two

saddle nodes collide, leaving behind a second supercritical
pitchfork bifurcation. The third panel in Fig. 4 demon-
strates this and corresponds to a parametric path that
intersects the pitchfork balloon without intersecting the
saddle-node surface.
We have now found a connection between the synchron-

ized state and the stable chimera state via a pitchfork
bifurcation. This connection is not evident in the D ¼ 0
case: The interesting behavior becomes compressed to the
β ¼ 0 axis, where the system is integrable [34]. The
singular perturbation D ¼ 0 → D > 0 is necessary to
reveal the “hidden” pitchfork bifurcations; the same pitch-
fork concept lies at the heart of many physical systems that
spontaneously break symmetry, e.g., buckling in beams,

magnetic interactions (Ising model), first-order phase
transitions in statistical mechanics, etc. (see, e.g., [35]).
In Fig. 3, the region inside the pitchfork balloon is the

region where only the chimera state is stable, and the region
between the pitchfork balloon and the saddle-node surface
is the region of bistability. The bistable region grows to
occupy 100% when D → 0, which explains why chimera
states were observed to coexist with a stable synchronized
state in this system with identical oscillators [5].
Perturbation theory.—Motivated by our computational

results regarding the geometry of the bifurcation surfaces,
we wish to obtain analytical expressions for these surfaces,
at least in the limit where parameter values are small.
We start by trying to identify a path through the origin

that remains exclusively in one region of the parameter
space partition shown in Fig. 3; that is, we want to find a
parametric path that passes through the origin and does not
cross either the pitchfork or saddle-node surface. The
parameter bounds on such a path should then correspond
to the boundaries we wish to identify.
A straight-line path fails, since it exits the chimera wedge

near the origin (recall that the wedge “pinches off” to the
origin in the D direction—see the inset in Fig. 2). That
means that, moving along a straight-line path toward the
origin, a system initialized in the chimera state would

FIG. 4. Cluster order parameter r1 and r2 vs phase lag β for
three values of D and A ¼ 0.08. Solid curves, stable branches;
dashed curves, unstable branches. Top panel: The symmetric
synchronized state has r1 ¼ r2 ¼ 1, and chimera states have
fr1 ¼ 1; r2 < 1g or fr1 < 1; r2 ¼ 1g. Middle and bottom
panels: Branches above and below the central branch corre-
spond to pairs of chimera states symmetric under the inter-
change of cluster number, i.e., fr1 ¼ a; r2 ¼ bg and
fr1 ¼ b; r2 ¼ ag. The center branch always corresponds to a
symmetric extension of the synchronized state with r1 ¼ r2.
Via numerical continuation [30,31].

FIG. 2. Bifurcations of equilibria from Eqs. (9) with A ¼ 0.05
(μ ¼ 0.525, ν ¼ 0.475). Red solid curves, pitchfork bifurcation;
blue dashed curves, saddle-node bifurcation. Note the peculiar
balloonlike shape of this section originating from the A axis. The
inset shows how curves shift as parameters change, with
A ¼ 0.0167, A ¼ 0.033, and A ¼ 0.05 from the bottommost
curve to the topmost. Via numerical continuation [30,31].

FIG. 3. Three-dimensional bifurcation surfaces for equilibria
of Eqs. (9). Red curved surface, pitchfork bifurcation; blue
planar surface, saddle-node bifurcation. Via numerical continu-
ation [30,31].
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necessarily switch to the synchronized state before it
reached the origin.
Instead, we find that a path where D scales quadratically

works as desired: A system initialized in the chimera state
can be continued along such a path arbitrarily close to the
origin. We will use this path to seek chimera state solutions
to system (9) in the perturbative limit where β, A, andD are
all small. We thus impose the parameter scaling fβ ¼
kβε; A ¼ kAε; D ¼ kDε2g together with the ansatz fr1 ¼
r1;0 þ r1;1ε; r2 ¼ r2;0 þ r2;1ε;ϕ ¼ ϕ0 þ ϕ1εg and look for
equilibria of system (9) truncated to successive orders of ε.
At the lowest order, i.e., ε ¼ 0, we find r1;0 ¼ 1;

r2;0 ¼ 1. Plugging in this zeroth-order solution and solving
the equations at first order in ε, we find ϕ0 ¼ 0.
Substituting the zeroth- and first-order solutions in (9)
and solving them at the second order in ε, we obtain a
quartic equation in ϕ1 and explicit solutions for r1;1 and r2;1
in terms of its roots:

kβϕ4
1−ð8k3β−4kAkDÞϕ2

1þ16k5β−16kAk2βkDþ16kβk2D¼0;

ð10aÞ

r1;1 ¼
−kD

kβ þ ϕ1=2
; ð10bÞ

r2;1 ¼
−kD

kβ − ϕ1=2
: ð10cÞ

Equation (10a) is a quadratic in ϕ2
1, and imposing

our expectation of real-valued solutions implies that
two constraints (which will define our bifurcation sur-
faces) must be satisfied. The solutions of Eq. (10a) after

simplification are ϕ1 ¼ �k−1=2β ½2k3β � kd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2A − 4k2β

q
−

kAkD�1=2. The first constraint is k2A − 4k2β > 0, which gives
us the saddle-node surface and is consistent with the
expression obtained by Abrams et al. [5], i.e., A − 2β ¼ 0.
The second constraint is a pair of inequalities which

gives us the complete pitchfork balloon

2β3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4β2

q
D − AD ¼ 0: ð11Þ

See Fig. 5 for a plot of these constraint surfaces.
A different type of connection.—Having already

obtained a connection between the synchronized branch
and the chimera branch in Fig. 4, we now explicitly
examine the connection between the Kuramoto model
and the two-cluster chimera state model.
Motivated by our understanding of the dynamics from

the 3D bifurcation plot, we choose a straight-line path from
the traditional Kuramoto model at ðβ; A;DÞ ¼ ðπ=2; 0; 0.2Þ
(global coupling without phase lag among nonidentical
oscillators) to a specific chimera state model (0.02,0.08,0)
(nonzero coupling disparity with phase lag among identical

oscillators). This path, shown in Fig. 5, intersects only the
pitchfork balloon, crossing the surface twice and thus
undergoing two pitchfork bifurcations (note that only
one crossing is visible in the figure).
Starting from the Kuramoto model, as we enter the

pitchfork balloon, the stable chimera state branches off
and the symmetric synchronized state loses stability. This
is visible moving along the curve from right to left in Fig. 6,
where s indicates the distance in parameter space. Near
s ¼ 0, we see that there is a small region of bistability
corresponding to the tiny region just under the pitchfork
balloon.

FIG. 5. Three-dimensional bifurcation surfaces for equilibria of
Eqs. (9) in the perturbative limit β, A,D ≪ 0. Red curved surface,
Eq. (11); blue planar surface, saddle-node surface. Green line:
Path between the chimera state at ðβ; A;DÞ ¼ ð0.02; 0.08; 0Þ and
the Kuramoto model state at ðβ; A;DÞ ¼ ðπ=2; 0; 0.2Þ (beyond
axis limits).

FIG. 6. Cluster orders r1 and r2 vs the distance in parameter
space from chimera state s at ðβ; A; DÞ ¼ ð0.02; 0.08; 0Þ via a
numerical continuation. The path in parameter space is a
straight line connecting the above chimera state to the tradi-
tional Kuramoto model state as ðβ; A;DÞ ¼ ðπ=2; 0; 0.2Þ. Solid
lines, stable branches; dashed or dotted lines, unstable
branches. Inset: Results from a numerical simulation of system
(3) with N1 ¼ N2 ¼ 256, with natural frequencies drawn
randomly from a Lorentzian distribution gðωÞ, with a total
integration time of 1500 s, and overlaid on stable branches
from the numerical continuation. Circles, order parameters
averaged over the final 750 s; error bars, standard deviation
of the order parameter over the final 750 s. Note that, where
multiple branches exist, pairs correspond to interchange sym-
metry ðr1 ¼ a; r2 ¼ bÞ → ðr1 ¼ b; r2 ¼ aÞ.
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The key point of this analysis is to demonstrate a simple,
intuitive aspect of the chimera state in this context: A
standard pitchfork bifurcation off of the well-understood
Kuramoto synchronized state leads to its appearance. In
this construction, it is not even bistable with the Kuramoto
synchronized state.
Conclusions.—For the “two-cluster” system, we have

demonstrated that the chimera state emerges from a
completely symmetric partially synchronized state familiar
from the traditional Kuramoto model. It appears via a
pitchfork bifurcation in which symmetry is broken so that
oscillators in one cluster synchronize to a greater extent
than oscillators in the other.
Future work might build on this insight so that other

puzzling aspects of the chimera state can be made clear. In
particular, chimera states in variable amplitude oscillators
and in systems with inertia remain poorly understood.
Furthermore, we speculate that the connection between
“spot” and “spiral” chimera states in two and higher
dimensions might be understandable with an approach like
that we use here. For the system on a ring with a nonlocal
coupling kernel, we suspect that an approach similar to
Laing’s [26] will allow for an explicit analysis of the
saddle-node and pitchfork surfaces.
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